收藏本站
收藏 | 投稿 | 手机打开
二维码
手机客户端打开本文

基于K-Means算法的SSD-Mobilenet模型优化研究

刘津龙  贾郭军  
【摘要】:SSD-Mobilenet目标检测模型是将SSD和Mobilenet进行结合衍生出的一种轻量化模型,同时具备了两模型各自的优势,即多尺度检测和模型轻量化。在原模型中特征提取层使用了人为设置的先验框,这样的设置存在一定的主观性,并不适用于对特定场景下单一类别目标的识别与定位。为解决这一问题,本文提出了使用K-Means算法对目标真实框的宽高比进行聚类分析,提升模型在特定场景下对单一类别目标的检测能力,规避了人为设置的主观先验性。使用Pascal VOC 2007数据集对该模型进行训练和评估,实验结果显示,模型的mAP值比Fast RCNN提高了4.5%,比Faster RCNN提高了1.5%,比SSD-300提高了3. 4%,比YOLOv2提高了2. 4%。

知网文化
中国知网广告投放
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62982499
  • 010-62783978


乐鱼体育免费下载